Hardness Amplification of Weakly Verifiable Puzzles

نویسندگان

  • Ran Canetti
  • Shai Halevi
  • Michael Steiner
چکیده

Is it harder to solve many puzzles than it is to solve just one? This question has different answers, depending on how you define puzzles. For the case of inverting one-way functions it was shown by Yao that solving many independent instances simultaneously is indeed harder than solving a single instance (cf. the transformation from weak to strong one-way functions). The known proofs of that result, however, use in an essential way the fact that for one-way functions, verifying candidate solutions to a given puzzle is easy. We extend this result to the case where solutions are efficiently verifiable only by the party that generated the puzzle. We call such puzzles weakly verifiable. That is, for weakly verifiable puzzles we show that if no efficient algorithm can solve a single puzzle with probability more than ε, then no efficient algorithm can solve n independent puzzles simultaneously with probability more than ε. We also demonstrate that when the puzzles are not even weakly verifiable, solving many puzzles may be no harder than solving a single one. Hardness amplification of weakly verifiable puzzles turns out to be closely related to the reduction of soundness error under parallel repetition in computationally sound arguments. Indeed, the proof of Bellare, Impagliazzo and Naor that parallel repetition reduces soundness error in three-round argument systems implies a result similar to our first result, albeit with considerably worse parameters. Also, our second result is an adaptation of their proof that parallel repetition of four-round systems may not reduce the soundness error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Hardness Amplification of Predicates and Puzzles

We give new proofs for the hardness amplification of efficiently samplable predicates and of weakly verifiable puzzles which generalize to new settings. More concretely, in the first part of the paper, we give a new proof of Yao’s XOR-Lemma that additionally applies to related theorems in the cryptographic setting. Our proof seems simpler than previous ones, yet immediately generalizes to state...

متن کامل

Security Amplification for InteractiveCryptographic Primitives

Security amplification is an important problem in Cryptography: starting with a “weakly secure” variant of some cryptographic primitive, the goal is to build a “strongly secure” variant of the same primitive. This question has been successfully studied for a variety of important cryptographic primitives, such as one-way functions, collision-resistant hash functions, encryption schemes and weakl...

متن کامل

Counterexamples to Hardness Amplification beyond Negligible

If we have a problem that is mildly hard, can we create a problem that is significantly harder? A natural approach to hardness amplification is the “direct product”; instead of asking an attacker to solve a single instance of a problem, we ask the attacker to solve several independently generated ones. Interestingly, proving that the direct product amplifies hardness is often highly non-trivial...

متن کامل

Almost Optimal Bounds for Direct Product Threshold Theorem

We consider weakly-verifiable puzzles which are challenge-response puzzles such that the responder may not be able to verify for itself whether it answered the challenge correctly. We consider k-wise direct product of such puzzles, where now the responder has to solve k puzzles chosen independently in parallel. Canetti et al have earlier shown that such direct product puzzles have a hardness wh...

متن کامل

Efficient String-Commitment from Weak Bit-Commitment and Full-Spectrum Theorem for Puzzles

We study security amplification for weak bit-commitment schemes and improve the efficiency of (black-box) transformations in both the information-theoretic and computational settings. Let Com0 be a (weak) bit-commitment scheme that is p-hiding in the sense that no cheating receiver can guess the committed bit correctly with probability better than (1 + p)/2, and qbinding in the sense that no ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004